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Regression Models for Linkage Heterogeneity Applied to Familial
Prostate Cancer
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Linkage heterogeneity frequently occurs for complex genetic diseases, and statistical methods must account for it
to avoid severe loss in power to discover susceptibility genes. A common method to allow for only a fraction of
linked pedigrees is to fit a mixture likelihood and then to test for linkage homogeneity, given linkage (admixture
test), or to test for linkage while allowing for heterogeneity, using the heterogeneity LOD (HLOD) score. Further-
more, features of the families, such as mean age at diagnosis, may help to discriminate families that demonstrate
linkage from those that do not. Pedigree features are often used to create homogeneous subsets, and LOD or HLOD
scores are then computed within the subsets. However, this practice introduces several problems, including reduced
power (which results from multiple testing and small sample sizes within subsets) and difficulty in interpretation
of results. To address some of these limitations, we present a regression-based extension of the mixture likelihood
for which pedigree features are used as covariates that determine the probability that a family is the linked type.
Some advantages of this approach are that multiple covariates can be used (including quantitative covariates),
covariates can be adjusted for each other, and interactions among covariates can be assessed. This new regression
method is applied to linkage data for familial prostate cancer and provides new insights into the understanding of
prostate cancer linkage heterogeneity.

Introduction

Genetic heterogeneity creates significant challenges to
efforts to discover the genetic basis of complex genetic
diseases. Although the causes of heterogeneity may be
varied, locus heterogeneity, which occurs when only a
subset of families demonstrate linkage to a chromosomal
region of interest, can be particularly damaging. If link-
age heterogeneity is ignored when the analysis is per-
formed, the power to detect linkage is dramatically
reduced.

A widely used method to account for locus hetero-
geneity is based on a likelihood composed of a mixture
of family types—linked and nonlinked (Smith 1961).
Likelihood-ratio tests can then be constructed either to
test for linkage homogeneity given the existence of link-
age (admixture test), or to test for linkage while allow-
ing for heterogeneity (heterogeneity log10 odds [HLOD]
score) (Ott 1999). This likelihood method and its var-
ious extensions, such as allowance for a trait locus to
be linked to markers on any number of chromosomes
(Bhat et al. 1998), are available in the widely used suite
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of HOMOG programs (Ott 1999). The additional het-
erogeneity parameters in the mixture likelihood can
make the method robust to model misspecification,
which is appealing for linkage analysis of complex hu-
man diseases. For example, a mixture likelihood gives
a good approximation to full two-locus models (Schork
et al. 1993); however, this approach has limitations. If
the probability that a pedigree is the linked type depends
on characteristics of the phenotype (e.g., age at disease
onset), then the results from the admixture likelihood
may be biased (Janssen et al. 1997). An obvious limi-
tation is that characteristic features, such as mean age
at disease onset, that may help to distinguish linked
from nonlinked pedigree types are not directly incor-
porated into the likelihood methods. To address this lim-
itation, pedigrees can be stratified according to their
features, and then each subset can be analyzed sepa-
rately. Subset analyses, however, introduce several prob-
lems: multiple testing can inflate the number of false-
positive conclusions, the comparison of linkage
information across subsets can be cumbersome, the
combination of multiple pedigree features can lead to
a small number of families in some subsets, and quan-
titative pedigree features must be split into categories.
Although stratification can increase the power to detect
linkage when the stratification factor adequately rep-
resents the locus heterogeneity, stratification on insig-
nificant features can reduce power (Leal and Ott 2000).

To overcome the limitations of subset analyses, we
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developed a regression-based extension of the mixture
likelihood. For this method, pedigree features are used
as covariates that determine the probability that a ped-
igree is the linked type. We apply this regression method
to two published studies of linkage analyses of familial
prostate cancer (MIM 176807) to illustrate some of the
strengths of this approach.

Methods

Regression Model for Linkage Heterogeneity

To present the mixture likelihood for each pedigree,
let a denote the probability that a pedigree is the linked
type, and let Li(v) denote the likelihood for the ith
pedigree at recombination fraction v. Then, the mix-
ture likelihood for a pedigree is L (a,v) p aL (v) �i i

, and the likelihood for the collection of(1 � a)L (0.5)i

all N pedigrees is . But, because itNL(a,v) p � L (a,v)ip1 i

is common practice to compute LOD scores for the ped-
igrees, the likelihood can also be written in terms of LOD
scores, by dividing by and substitutingL (a,v) L (0.5)i i

for .∗ LOD (v)iL (a,v) p [a10 � (1 � a)] L (a,v)i i

The mixture likelihood can be extended by allowing
the a to depend on covariates that characterize the fea-
tures of the pedigree. Let denote a vector of pedigreexi

features for the ith pedigree, with the first element of
equal to 1, for the intercept. We model the pedigreexi

features by the logistic regression

′b xie
a(bFx ) p ,′i b xi1 � e

where the vector of regression parameters, b, captures
the linkage heterogeneity information provided by the
pedigree features. The resulting mixture likelihood for
the ith pedigree depends on both b and v according
to , and the∗ LOD (v)iL (b,vFx ) p [a(bFx )10 � 1 � a(bFx )]i i i i

total log likelihood for all families is ln L(b,v) p
.N ∗� ln L (b,vFx )ip1 i i

To estimate the parameters b and v, we maximize the
mixture likelihood by using the expectation-maximiza-
tion (EM) algorithm. To illustrate this procedure, first
consider the simpler situation of modeling the effects of
pedigree covariates on the probability of linkage when
it is known which pedigrees are linked. In this case, we
would let the dependent value have a value of 1 ifyi

linked and of 0 if not linked, and then we would simply
use logistic regression. But, because pedigree type (linked
or nonlinked) is unknown, the expectation step of the
EM algorithm is used to estimate the expectation that
a pedigree is a linked type. This is achieved by using
current values of b and v to compute the posterior prob-
ability that a family is a linked type,

LOD (v)ia(bFx )10ipost p .i LOD (v)ia(bFx )10 � 1 � a(bFx )i i

Then, the maximization step entails maximizing a
weighted logistic-regression function, with the values of
the posterior probabilities serving as weights. That is,
each family is used twice, once as linked and once as
nonlinked, so each family contributes the following to
the logistic regression: the vector (1,0) of “dependent”
yi values, the vector of repeated covariates (xi, xi), and
the vector of corresponding weights .(post ,[1 � post ])i i

Standard software can be used to maximize this logistic-
regression function, to determine updated values for b.
These new b values are then used to determine a(bFx )i
for each family, which, in turn, are used to determine
the value of v that maximizes . Then, the up-ln L(b,v)
dated values of b and v are used for the expectation step,
and the EM cycle is repeated until the change in

is small.ln L(b,v)
Likelihood-ratio test (LRT) statistics can be computed

to test hypotheses about the b parameters. The LRT is
twice the difference between a full-model log likelihood
and a reduced-model log likelihood. Several types of
hypotheses can be formulated: (1) a test for linkage,
allowing for heterogeneity; (2) a test for homogeneity
(i.e., all pedigrees linked), given linkage; and (3) a test
of whether the pedigree features discriminate, at a
statistically significant level, between linked and non-
linked pedigrees, given linkage. If linkage heteroge-
neity exists but is not explained by the covariates, then
only the intercept, b0, differs from 0. In this case, our
regression model provides the same information as the
usual HLOD computed by HOMOG, because b p0

. In this report, we focus on the third typelog [a/(1 � a)]
of hypothesis testing. It should be noted, however, that
the LRT for linkage, allowing for heterogeneity, has a
complex distribution. When there is no linkage, the frac-
tion of linked pedigrees is not defined; and even in the
simplest case, with only an intercept in the regression
model, the asymptotic distribution of the HLOD is a
complex mixture of x2 distributions with mixing prob-
abilities that depend on the linkage information pro-
vided by the pedigrees (Chiano and Yates 1995) and the
assumed genetic model (Huang et al. 2000). However,
if linkage exists, then the LRT is expected to follow a
x2 distribution. Therefore, to test whether the pedigree
features discriminate, at a statistically significant level,
between linked and nonlinked pedigrees, given linkage,
we compute probability values for the LRTs according
to the usual x2 distribution. The heterogeneity regression
analyses were conducted by S-PLUS software (Insightful,
Corp.), and locally written functions, which can be
loaded into S-PLUS and are available at the authors’
Web site.
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Chromosome 1 Data Set

An international collaborative effort to characterize
the evidence for linkage of hereditary prostate cancer to
chromosome region 1q24-25 reported an HLOD of 1.40
and an estimated 6% of the families linked to this region
(Xu and International Consortium for Prostate Cancer
Genetics 2000). This collaborative study was based on
772 families that were contributed by nine groups of
investigators. Because of informed-consent issues, it was
not possible to consider data for individual members of
each pedigree. Therefore, only the information sum-
marizing the pedigree, including pedigree characteristics
and LOD scores, was pooled. Multipoint LOD scores
were computed by GENEHUNTER (Kruglyak et al.
1996), with six markers, spanning a region of 24.1 cM,
and an assumed-dominant model (see details in the re-
port by Xu and International Consortium for Prostate
Cancer Genetics 2000). The software HOMOG (Ott
1999) was used to compute the HLOD for the entire
group of pedigrees, as well as for multiple subsets. Sub-
sets were defined by the presence or absence of male-to-
male disease transmission of prostate cancer, by the
mean age at diagnosis of prostate cancer among pedigree
members, by the number of affected family members,
and by combinations of male-to-male disease transmis-
sion with the other two features. The conclusion from
this report was that HPC1, the putative gene in the re-
gion 1q24-25, accounts for a significant fraction of he-
reditary prostate cancer in the subset of families char-
acterized by at least five affected family members,
younger mean age at diagnosis (!65 years), and male-
to-male disease transmission. This conclusion was based
on 48 families, with an HLOD of 2.25 and .a p .29

Chromosome 20 Data Set

Another study of hereditary prostate cancer per-
formed similar subset analyses for chromosome 20 link-
age in 162 families with prostate cancer (Berry et al.
2000). The strongest evidence for linkage was detected
in the subset of families that was mutually exclusive of
the subset used in the chromosome 1q24-25 combined
analysis, that is, the families characterized by fewer than
five affected family members, older mean age at diag-
nosis (�66 years), and no male-to-male disease trans-
mission. The HLOD from these 19 families was 2.34,
with .a p .75

Our regression model for linkage heterogeneity was
applied to the combined data for 772 families studied
for chromosome 1 linkage and the data for 162 families
studied for chromosome 20 linkage, to explore the con-
tribution and interaction of each covariate. The infor-
mation available for each pedigree included multipoint
LOD scores and information about factors that were

used as covariates. For each data set, the contribution
of mean age at diagnosis was evaluated as a binary co-
variate, as presented in the original reports (using a cut-
off of age 65 years for the chromosome 1 data and a
cutoff of age 66 years for the chromosome 20 data), as
well as by other models (linear age in years, quadratic
age effect [incorporating both age and age2 in the model],
log of age, and four age categories). The other covariates
were included as binary terms (five or more vs. fewer
than five affected family members and presence vs. ab-
sence of male-to-male disease transmission).

Simulations

To gain some insights into the statistical properties of
the likelihood-ratio statistic, we performed a limited set
of simulations. A total of 100 families, each with four
affected siblings, were simulated by SLINK (Weeks et al.
1990), according to an autosomal dominant model (Xu
and International Consortium for Prostate Cancer Ge-
netics 2000), with a rare mutant–allele frequency of .003
and with penetrances of .001 and 1.0 for noncarriers
and carriers, respectively. Conditional on disease status,
marker genotypes were simulated such that the disease
locus was midway between two markers spaced 10 cM
apart. To consider linkage heterogeneity, two types of
pedigrees were simulated; 50 pedigrees linked with prob-
ability a1 and 50 pedigrees linked with probability a2.
Multipoint linkage analyses were performed by GENE-
HUNTER (Kruglyak et al. 1996), using the simulation
genetic model for analyses. A covariate, having a value
of 0 if a type 1 pedigree and a value of 1 if a type 2
pedigree, was created for each pedigree. This covariate,
along with the multipoint LOD scores per pedigree, was
used to create an LRT to test the null hypothesis that

, which implies that the linkage heterogeneity isb p 0
not explained by the covariate. The criterion for statis-
tical significance was and was based on aLRT 1 3.84
x2 distribution with 1 df and . The simulationP ! .05
process was repeated 100 times to compute the type I
error rate and the power.

Results

Chromosome 1 Results

Before multiple covariates were assessed, we evaluated
different ways to model the mean age at diagnosis, and
the results are presented to demonstrate the flexibility
of the regression method (table 1). The LRT was used
to test each model versus the model with only an inter-
cept. As demonstrated in table 1, none of the methods
for including mean age at diagnosis resulted in a statis-
tically significant effect of age. Although the linear model
has a positive b1, suggesting that the probability of a
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Table 1

Chromosome 1 Linkage Heterogeneity Regression Models
for Mean Age at Diagnosis

Model Parameter ln L LRTa (df) P

Intercept only b0 p �2.67 3.216 reference
Linear b0 p �10.97 3.565 .70 (1) .40

b1 p .12
Quadratic b0 p 56.83 4.812 3.19 (2) .20

b1 p �1.81
b2 p .01

Categories:
!60 years b0 p �1.75 5.059 3.69 (3) .30
60–65 years b1 p �.42
65–70 years b2 p �2.63
�70 years b3 p �.27

Binary:
!65 years b0 p �2.08 3.918 1.40 (1) .24
�65 years b1 p �1.08

NOTE.—For all models, the estimated p .06.v
a LRT against model with intercept only.

Table 2

Chromosome 1 Linkage Heterogeneity Stepwise Regression of
Pedigree Covariates

STEP

AND NO.a INTERCEPT

REGRESSION COEFFICIENTS FOR

ln LTransmissionb

No.
Affectedc Aged

1, 3 �13.00 11.17 .83 �1.28 7.63
2, 2 �11.28 9.85 �1.14 7.06
3, 1 �12.34 10.29 5.92

a No. of covariates.
b Male-to-male disease transmission.
c No. of pedigree members affected (!5 vs. �5).
d Mean age at diagnosis (!65 years vs. �65 years).

linked type of pedigree increases with age, there is strong
evidence that the effect of age is actually not linear. The
more flexible model with four age categories suggests
that the youngest age group (!60 years) has the highest
fraction of linked pedigrees, because the negative coef-
ficients for the older age groups are added to the inter-
cept and hence decrease the probability that they are
linked. In fact, the third age group (65–70 years) had
the lowest estimated fraction of linked pedigrees, dem-
onstrating a nonlinear effect of age. The models with
the smallest P values provided evidence that they may
be the best discriminators of linkage heterogeneity. Al-
though the quadratic effect of age may be the best, bi-
nary coding, which was used in the original published
report, seems to capture the effect of age just as well
and provides a simpler interpretation. For this reason,
the binary coding was used for all subsequent models.
On the basis of results of the binary age effect, the pre-
dicted probability that a pedigree is a linked type is 11%
when mean age at diagnosis is !65 years and is 4% when
mean age is �65. These results agree with the published
subset analyses, because whenever a single categorical
covariate is included in the regression model, the fraction
of linked pedigrees estimated by the regression model
agrees with the fractions calculated by HOMOG for
each of the category subsets. This is not necessarily true
when multiple covariates are included in the regression
model.

To evaluate the simultaneous effects of the three co-
variates (number affected, mean age at diagnosis, and
male-to-male disease transmission), a backwards step-
wise regression was performed. A full model with all
three covariates was fitted, and then the least-significant
covariates were eliminated in a stepwise fashion. The

advantage of evaluating covariates simultaneously is that
the influence of each covariate is adjusted for the effects
of the others. For the chromosome 1 data, male-to-male
transmission was positively correlated with a greater
number of affected family members (odds ratio 3.02
[ ] for the binary covariates). At the first step,P ! .001
the tests for male-to-male disease transmission, mean age
at diagnosis, and number affected (each covariate ad-
justed for the other two) resulted in , ,P p .01 P p .10
and , respectively. After excluding number af-P p .29
fected, the tests for male-to-male disease transmission
and mean age at diagnosis resulted in andP p .01

, respectively. These stepwise models (summa-P p .13
rized in table 2) suggest that only male-to-male disease
transmission is a statistically significant ( ) pre-P p .02
dictor of whether a pedigree is the linked type. On the
basis of the final model, the predicted probability that
a pedigree is a linked type is near 0% for pedigrees
without male-to-male disease transmission and is
11% for those with male-to-male disease transmis-
sion. Although our results suggest that a younger
mean age at diagnosis is more likely to be of the linked
type—because the regression coefficient for older age is
negative (�1.14)—this covariate does not achieve sta-
tistical significance.

The report by Xu and International Consortium for
Prostate Cancer Genetics (2000) concluded that the ev-
idence for linkage was strongest in the subset of pedi-
grees meeting all three criteria—male-to-male disease
transmission, younger mean age at diagnosis, and �5
affected family members—which implies interaction of
the covariates. To examine whether a combination of
pedigree features provides significant discrimination be-
tween linked and nonlinked types of pedigrees, we fitted
a series of interaction models. All models included the
three main effects but used different interaction terms;
three models included each of the two-way interaction
terms, and another model included the three-way inter-
action. For these interaction models, the highest LRT
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Table 3

Chromosome 20 Linkage Heterogeneity Regression Models
for Mean Age at Diagnosis

Model Parameter ln L LRTa (df) P

Intercept only b0p �1.95 2.480 Reference
Linear b0p �22.26 4.165 3.37 (1) .07

b1p .30
Quadratic b0p 23.26 4.269 3.58 (2) .17

b1p �1.04
b2p .01

Categories:
!60 years b0p �18.16 4.142 3.32 (3) .34
60–65 years b1p 14.90
65–70 years b2p 16.51
�70 years b3p 17.42

Ranked b0p �4.14 4.038 3.12 (1) .08
b1p 1.17

Binary:
!66 years b0p �4.51 3.213 1.47 (1) .23
�66 years b1p �1.08

NOTE.—For all models, the estimated v p .06.
a LRT against model with intercept only.

Table 4

Chromosome 20 Linkage Heterogeneity Stepwise Regression of Pedigree Covariates: Comparison
of Binary Versus Ranked Age Category

AGE

COVARIATE

AND STEP

NO. OF

COVARIATES INTERCEPT

REGRESSION COEFFICIENTS FOR

ln L

Male-to-Male
Transmisson
(Yes vs. No)

No. Affected
(!5 vs. �5)

Mean Age
at Diagnosis

(Years)

Binary:
1 3 �1.06 �9.68 �.91 2.29 9.55
2 2 �.41 �3.75 1.20 8.89
3 1 .23 �5.36 8.31

Ranked:
1 3 �24.58 �15.38 �1.79 12.70 13.07
2 2 �28.59 �17.60 14.35 12.37

score for interaction was .42 ( ). Given that onlyP p .52
male-to-male disease transmission was significant in the
stepwise selection and given that no tests demonstrated
significant interactions, it is unlikely that there is any
three-way interaction. This, in turn, suggests that the
evidence of strongest linkage in the subset meeting all
three criteria is driven mainly by the effect of male-to-
male disease transmission.

Chromosome 20 Results

To explore the effects of mean age at diagnosis on
chromosome 20 linkage results, we first evaluated age
by fitting several models (table 3), similar to the ap-
proach illustrated above for chromosome 1 analyses.
Although none of the models demonstrated a statis-
tically significant effect of age, there is a strong sug-
gestion that an increasing mean age at diagnosis in-

creases the probability that a family is the linked type.
This is demonstrated by positive regression coeffi-
cients for increasing age for almost all models. The
model with four age categories is fairly robust, and
the values of the estimated regression coefficients sug-
gest that the log odds of the probability that a family
is the linked type increases approximately linearly
across the three older age groups. Hence, a model was
fitted with an age rank of 0, 1, 2, or 3, according to
whether the mean age at diagnosis was !60, 60–65,
65–70, or �70 years. The resulting P value for this
ranked age–category model ( ) was close toP p .08
that found for the linear age model ( ), yet theP p .07
ranked age–category model may be more robust.

To illustrate the importance of appropriately account-
ing for the influence of a covariate, we performed step-
wise selection of the regression coefficients for the three
covariates (number affected, mean age at diagnosis, and
presence or absence of male-to-male transmission); how-
ever, in one analysis we used the binary coding for age,
and in a second analysis we used the ranked-age category
(table 4). For the binary age covariate, the tests for male-
to-male transmission, mean age at diagnosis, and num-
ber affected, with each covariate adjusted for the other
two, resulted in P values of .0005, .13, and .25, re-
spectively. After excluding number affected, the tests for
male-to-male transmission and mean age at diagnosis
resulted in P values of .0008 and .28, respectively. This
stepwise procedure resulted in a final model that in-
cluded only male-to-male disease transmission as a sta-
tistically significant predictor (P !.001 ) of whether a
pedigree is the linked type. In contrast, when mean age
at diagnosis was included as the ranked-age category, it
was retained in the stepwise regression ( ),P p .004
along with male-to-male disease transmission (P !.001);
only the number affected was nonsignificant ( ).P p .24
Note that the influence of age was more striking when
it was adjusted for male-to-male disease transmission
( when age-rank was tested by itself vs.P p .08 P p
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Table 5

Correlation of Male-to-Male Disease Transmission with Mean Age
at Diagnosis

M TO Ma

PEDIGREES WITH MEAN AGE AT DIAGNOSIS OF

!60
Years
n (%)

60–65
Years
n (%)

65–70
Years
n (%)

�70
Years
n (%)

No 5 (38) 13 (27) 16 (28) 12 (28)
Yes 8 (62) 36 (73) 41 (72) 31 (72)
Total 13 (100) 49 (100) 57 (100) 43 (100)

a Male-to-male disease transmission.

Table 6

Simulation Results for LRT to Test
whether a Covariate Explains Linkage
Heterogeneity

a1

(%)
a2

(%)
Significant LRT

(%)

0 5 4
10 0
20 12
50 68

5 5 1a

10 8
20 11
50 60

10 5 3
10 4a

20 8
50 45

NOTE.—Data simulate 50 pedigrees
linked with probabilty a1 and 50 pedi-
grees linked with probabilty a2.

a Type I error rate.

when age-rank was adjusted for male-to-male.004
disease transmission). This masking of the age effect oc-
curred because families with a earlier mean age at di-
agnosis (!60 years) had a lower frequency of male-to-
male disease transmission compared with families with
a later age at diagnosis (table 5). This highlights the
advantage of simultaneously evaluating various pedigree
features. Pairwise interactions were explored in a man-
ner similar to that used for chromosome 1 analyses, both
for the binary and the ranked-category methods of in-
cluding age. The largest LRT for interaction over all
models was .58 ( ), suggesting that there is noP p .45
interaction between any of the three covariates.

Simulation Results

Our limited simulations, for a single covariate, are
presented in table 6. These results indicate that the LRT
is conservative (with simulated type I error rates of 1%
and 4%) and that, unless the covariate has a large in-
fluence on linkage heterogeneity, the power of the LRT
is weak. Further simulations are required to evaluate the
influence of multiple covariates, as well as interactions.

Discussion

We have presented a regression-based method that al-
lows evaluation of whether the amount of linkage het-
erogeneity differs with values of pedigree covariates. The
regression procedure provides several benefits. It allows
use of a flexible manner to model the effects of covariates
(including continuous covariates); the contribution of
each covariate is adjusted for the other covariates (useful
for correlated covariates), the relative contribution of
the covariates can be easily compared, and interaction
terms can be evaluated. In contrast, subset analyses are
often based on ad hoc groupings chosen to maximize
the HLOD, which can lead to an increased chance of
false-positive conclusions and, perhaps, misleading in-
terpretations. Furthermore, stratification does not pro-
vide a mechanism to test whether linkage heterogeneity

varies over the strata. Finally, if the fraction of linked
families does not differ dramatically over the various
subsets, then splitting the data into more subsets than
necessary can diminish the power to detect linkage (Leal
and Ott 2000).

The strength of the regression-based approach, in
contrast to the creation of subsets, is illustrated by the
results for both chromosomes 1 and 20. That is, if a
single covariate is a strong predictor whether families
are of the linked type (male-to-male disease transmis-
sion for chromosome 1), then combining that covariate
with an insignificant covariate, in an attempt to refine
the subsets, can cause misleading conclusions that the
combined covariate effects are important. Random var-
iation is likely to cause the amount of linkage hetero-
geneity due to male-to-male disease transmission to vary
over levels of an insignificant covariate. Therefore, we
are very likely, by chance alone, to find stronger linkage
evidence, as measured by HLOD, in one of the subsets
created by combining male-to-male transmission with
the insignificant covariate. In contrast, the regression-
based approach allows direct testing of whether the
combined effect of covariates (i.e., covariate interaction)
is statistically significant.

A limitation of our regression method is that a mod-
erate number of pedigrees are likely to be required to
provide numerical stability in the estimation procedure.
Although the b parameters provide a flexible method
to account for linkage heterogeneity explained by the
pedigree covariates, one should be cautious about their
interpretation. It is unlikely that the fraction of linked
pedigrees in a population can be estimated without bias,
because the parameter estimates depend on the assumed
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genetic model and on how the pedigrees were ascer-
tained. If the assumed genetic model is wrong (for ex-
ample, if the pedigrees of the linked type do not have
the same genetic model—i.e., allele frequency and pen-
etrance—as the pedigrees that are not linked), then the
estimated fraction of linked pedigrees will be biased
(Logue and Vieland 2000)

Our results suggest that linkage heterogeneity for
prostate cancer may be partially explained by families
with male-to-male disease transmission, which are more
likely to be linked to chromosome 1, and families with-
out male-to-male disease transmission, which are more
likely to be linked to chromosome 20. On the basis of
the chromosome 1 final model, the predicted probability
that a pedigree is a linked type is near 0% for pedigrees
without male-to-male transmission and is 11% for those
with male-to-male transmission. For the final model de-
veloped for the chromosome 20 data, which included
both male-to-male disease transmission and ranked age
categories, the model predictions are as follows: for ped-
igrees without male-to-male disease transmission, the
fraction of linked pedigrees is near 0% if mean age at
diagnosis is !65 years, 53% if age is 65–70 years, and
100% if age is �70 years; for pedigrees with male-to-
male disease transmission, the predicted fraction of
linked pedigrees is near 0% when mean age at diagnosis
is !70 years and is 4% when mean age at diagnosis is
�70 years. Note that the effect of mean age at diagnosis
was in opposite directions for chromosomes 1 and 20;
later mean age is less likely linked to chromosome 1
and more likely linked to chromosome 20.

A direct method to evaluate the simultaneous influ-
ence of linkage to two different chromosomes is to fit
a mixture model with three types of pedigrees; a fraction
linked to chromosome 1, a fraction linked to chromo-
some 20, and the remainder not linked to either chro-
mosome (as implemented in HOMOG3R [Ott 1999]).
Although the combined analysis of 772 families for
chromosome 1 did not have chromosome 20 markers
available, we did apply HOMOG3R to our subset of
142 families from the Mayo Clinic study that had both
chromosome 1 and 20 data. The HLOD score was 1.43,
with ∼10% of the families linked to chromosome 1 and
∼18% linked to chromosome 20. However, this ap-
proach does not consider the features of the pedigrees.
It is possible to extend our regression-based method to
allow for multiple loci by introducing a regression equa-
tion for each locus; however, it is likely that this exten-
sion would require a large number of families to obtain
reliable estimates of the many regression parameters.
Nonetheless, our proposed regression method should
allow better exploration of linkage heterogeneity, as de-
scribed by features of the pedigrees. As with any re-
gression analysis, covariates should be coded with care,
and the number of multiple regression models should

be restricted to avoid the potential for an inflated rate
of false-positive findings.
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